Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.966
Filtrar
1.
J Mammary Gland Biol Neoplasia ; 29(1): 10, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38722417

RESUMEN

Signal transducers and activators of transcription (STAT) proteins regulate mammary development. Here we investigate the expression of phosphorylated STAT3 (pSTAT3) in the mouse and cow around the day of birth. We present localised colocation analysis, applicable to other mammary studies requiring identification of spatially congregated events. We demonstrate that pSTAT3-positive events are multifocally clustered in a non-random and statistically significant fashion. Arginase-1 expressing cells, consistent with macrophages, exhibit distinct clustering within the periparturient mammary gland. These findings represent a new facet of mammary STAT3 biology, and point to the presence of mammary sub-microenvironments.


Asunto(s)
Células Epiteliales , Glándulas Mamarias Animales , Factor de Transcripción STAT3 , Animales , Femenino , Bovinos , Glándulas Mamarias Animales/metabolismo , Glándulas Mamarias Animales/citología , Glándulas Mamarias Animales/crecimiento & desarrollo , Ratones , Células Epiteliales/metabolismo , Factor de Transcripción STAT3/metabolismo , Fosforilación , Embarazo , Parto/fisiología , Parto/metabolismo , Transducción de Señal
2.
PLoS One ; 19(4): e0300728, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38683862

RESUMEN

Feeding high-gain diets and an inadequate energy and protein ratio during pre-puberty may lead to impaired growth and mammary gland development of heifers. Thus, frequent application of bovine somatotropin (bST) may prevent future losses in productivity, improve mammary development and animal performance. We aimed to evaluate the effects of bST on digestibility, performance, blood metabolites, mammary gland development, and carcass composition of high-performance prepubertal Holstein × Gyr heifers. Thirty-four Holstein × Gyr heifers with an average initial body weight of 218 ± 49 kg and 14 ± 4 months of age were submitted to an 84-day trial evaluating the effects of no bST or bST injections. Treatments were randomly assigned to each animal within one of the tree blocks. The bST did not influence digestibility or performance parameters. Regarding blood results, IGF1 concentration presented an interaction between treatment and day, where bST heifers had the highest IGF1 concentration. Heifers receiving bST also showed increased ribeye area; however, only an experimental day effect for backfat thickness was observed, with greater accumulation of carcass fat on day 84. Heifers receiving bST had lower pixels/mm² on parenchyma, characteristic of greater parenchymal tissue. Moreover, heifers on bST treatment also had reduced pixels/mm2, characteristic of reduced fat pad tissue. Lastly, bST injections did not influence liver and muscle gene expression, nor most genes evaluated in mammary gland tissue, except for IGFBP3 expression, which was greater for bST heifers. In summary, we confirm the efficacy of bST injections to overcome the detrimental effects of high-gain diets on mammary gland growth and to improve lean carcass gain of prepubertal Holstein × Gyr heifers.


Asunto(s)
Hormona del Crecimiento , Animales , Bovinos , Femenino , Hormona del Crecimiento/sangre , Glándulas Mamarias Animales/metabolismo , Glándulas Mamarias Animales/crecimiento & desarrollo , Glándulas Mamarias Animales/efectos de los fármacos , Factor I del Crecimiento Similar a la Insulina/metabolismo , Dieta/veterinaria , Alimentación Animal/análisis , Maduración Sexual/efectos de los fármacos , Composición Corporal/efectos de los fármacos , Fenómenos Fisiológicos Nutricionales de los Animales , Proteína 3 de Unión a Factor de Crecimiento Similar a la Insulina/sangre , Proteína 3 de Unión a Factor de Crecimiento Similar a la Insulina/metabolismo
3.
Int J Mol Sci ; 24(18)2023 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-37762652

RESUMEN

The mammary gland undergoes intensive remodeling during the lactation cycle, and the involution process of mammary gland contains extensive epithelial cells involved in the process of autophagy. Our studies of mice mammary glands suggest that miR-30a-3p expression was low during involution compared with its high expression in the mammary glands of lactating mice. Then, we revealed that miR-30a-3p negatively regulated autophagy by autophagy related 12 (Atg12) in mouse mammary gland epithelial cells (MMECs). Restoring ATG12, knocking down autophagy related 5 (Atg5), starvation, and Rapamycin were used to further confirm this conclusion. Overexpression of miR-30a-3p inhibited autophagy and altered mammary structure in the involution of the mammary glands of mice, which was indicative of alteration in mammary remodeling. Taken together, these results elucidated the molecular mechanisms of miR-30a-3p as a key induction mediator of autophagy by targeting Atg12 within the transition period between lactation and involution in mammary glands.


Asunto(s)
Autofagia , Glándulas Mamarias Animales , MicroARNs , Animales , Femenino , Ratones , Autofagia/genética , Proteína 5 Relacionada con la Autofagia , Células Epiteliales , Lactancia/genética , MicroARNs/genética , Glándulas Mamarias Animales/crecimiento & desarrollo , Glándulas Mamarias Animales/metabolismo
4.
J Mammary Gland Biol Neoplasia ; 28(1): 19, 2023 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-37479911

RESUMEN

The adaptor proteins NCK1 and NCK2 are well-established signalling nodes that regulate diverse biological processes including cell proliferation and actin dynamics in many tissue types. Here we have investigated the distribution and function of Nck1 and Nck2 in the developing mouse mammary gland. Using publicly available single-cell RNA sequencing data, we uncovered distinct expression profiles between the two paralogs. Nck1 showed widespread expression in luminal, basal, stromal and endothelial cells, while Nck2 was restricted to luminal and basal cells, with prominent enrichment in hormone-sensing luminal subtypes. Next, using mice with global knockout of Nck1 or Nck2, we assessed mammary gland development during and after puberty (5, 8 and 12 weeks of age). Mice lacking Nck1 or Nck2 displayed significant defects in ductal outgrowth and branching at 5 weeks compared to controls, and the defects persisted in Nck2 knockout mice at 8 weeks before normalizing at 12 weeks. These defects were accompanied by an increase in epithelial cell proliferation at 5 weeks and a decrease at 8 weeks in both Nck1 and Nck2 knockout mice. We also profiled expression of several key genes associated with mammary gland development at these timepoints and detected temporal changes in transcript levels of hormone receptors as well as effectors of cell proliferation and migration in Nck1 and Nck2 knockout mice, in line with the distinct phenotypes observed at 5 and 8 weeks. Together these studies reveal a requirement for NCK proteins in mammary gland morphogenesis, and suggest that deregulation of Nck expression could drive breast cancer progression and metastasis.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Glándulas Mamarias Animales , Animales , Ratones , Ratones Noqueados , Ratones Endogámicos C57BL , Glándulas Mamarias Animales/citología , Glándulas Mamarias Animales/crecimiento & desarrollo , Glándulas Mamarias Animales/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proliferación Celular , Células Epiteliales/citología , Expresión Génica
5.
J Mammary Gland Biol Neoplasia ; 28(1): 10, 2023 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-37219601

RESUMEN

The ERBB tyrosine kinase receptors and their ligands belong to a complex family that has diverse biological effects and expression profiles in the developing mammary glands, where its members play an essential role in translating hormone signals into local effects. While our understanding of these processes stems mostly from mouse models, there is the potential for differences in how this family functions in the mammary glands of other species, particularly in light of their unique histomorphological features. Herein we review the postnatal distribution and function of ERBB receptors and their ligands in the mammary glands of rodents and humans, as well as for livestock and companion animals. Our analysis highlights the diverse biology for this family and its members across species, the regulation of their expression, and how their roles and functions might be modulated by varying stromal composition and hormone interactions. Given that ERBB receptors and their ligands have the potential to influence processes ranging from normal mammary development to diseased states such as cancer and/or mastitis, both in human and veterinary medicine, a more complete understanding of their biological functions should help to direct future research and the identification of new therapeutic targets.


Asunto(s)
Receptores ErbB , Glándulas Mamarias Animales , Glándulas Mamarias Humanas , Animales , Femenino , Humanos , Ratones , Modelos Animales de Enfermedad , Ligandos , Glándulas Mamarias Humanas/crecimiento & desarrollo , Glándulas Mamarias Animales/crecimiento & desarrollo
6.
Anat Histol Embryol ; 52(3): 500-511, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36718667

RESUMEN

Ultrasound technologies allow for a non-invasive assessment of mammary gland (MG) development, the differentiation between the tissue types of the MG, and the evaluation of changes in its composition. This study aimed to work out a detailed description of the different stages of MG development that are visually discernible by ultrasonography for providing a template to classify the different structures. With this basis, the qualitative categorization of the developmental stage, as well as further quantitative assessments via pixel densities in the structures of interest, should be facilitated. Ultrasonic images were acquired from all four quarters of 37 German Holstein heifer calves fed either at a high feeding level of milk replacer (MR; 14% solids) at 10 L/day (1.4 kg MR/day; HI, n = 18) or at a restrictive low level of 5.7 L/day (0.8 kg MR/day; RES, n = 19) until linear weaning from week 13 to 14 of life. Ultrasound MG scans were performed first in week 3 of life, fortnightly from week 8-16, and in week 20 of life, in standing position, of each quarter, using a B-mode ultrasound device equipped with a linear probe (18 MHz). The developmental stages of the mammary gland parenchyma (PAR), visible in ultrasound images, obtained over 20 weeks of life, were categorized, described, and drawn by hand. On this basis, a template for classifying the visible categories of mammary PAR development and its surrounding tissue (SURR), and for measuring their pixel brightness was created thus providing an ultrasonographic atlas of the developing bovine MG, describing 11 categories. The ultrasound images were further classified by PAR structure, and pixel brightness was measured in PAR and SURR by using ImageJ Fiji. The difference in pixel brightness between PAR and SURR, the delta (Δ) pixel value was calculated. With increasing age, higher atlas categories of PAR developmental stages were shown. Pixel values, i.e. the brightness of PAR, its SURR, and Δ pixel value changed with age but were neither affected by the feeding group nor by a group × time interaction. With progressing PAR development, its pixel brightness increased from week 10 to 20 of life, i.e., the PAR became more hyperechoic since it spread and grew into its SURR. The atlas can serve as a template for the categorization and qualitative assessment of MG structures and for the quantitative assessment of PAR's development by measuring pixel brightness. With our study, we could show the structural development in PAR as well as in SURR in MG simultaneously in early life and confirm the spreading of PAR into its SURR by ultrasound scanning.


Asunto(s)
Dieta , Glándulas Mamarias Animales , Ultrasonografía , Animales , Bovinos , Femenino , Peso Corporal , Dieta/veterinaria , Glándulas Mamarias Animales/diagnóstico por imagen , Glándulas Mamarias Animales/crecimiento & desarrollo , Leche , Ultrasonografía/veterinaria , Destete
7.
Sci Rep ; 12(1): 12286, 2022 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-35854046

RESUMEN

Progesterone receptor (PGR) is a member of the nuclear receptor superfamily of transcription factors. It is critical for mammary stem cells expansion, mammary ductal branching and alveologenesis. The transcriptional activity of PGR is mainly mediated by activation functions AF1 and AF2. Although the discovery of AF1 and AF2 propelled the understanding of the mechanism of gene regulation by nuclear receptors, their physiological roles are still poorly understood. This is largely due to the lack of suitable genetic models. The present study reports gain or loss of AF1 function mutant mouse models in the study of mammary development. The gain of function mutant AF1_QQQ exhibits hyperactivity while the loss of function mutant AF1_FFF shows hypoactivity on mammary development. However, the involvement of AF1 is context dependent. Whereas the AF1_FFF mutation causes significant impairment in mammary development during pregnancy or in response to estrogen and progesterone, it has no effect on mammary development in nulliparous mice. Furthermore, Rankl, but not Wnt4 and Areg is a major target gene of AF1. In conclusion, PGR AF1 is a pivotal ligand-dependent activation domain critical for mammary development during pregnancy and it exerts gene specific effect on PGR regulated genes.


Asunto(s)
Glándulas Mamarias Animales , Receptores de Progesterona , Factores de Transcripción , Animales , Femenino , Glándulas Mamarias Animales/crecimiento & desarrollo , Glándulas Mamarias Animales/metabolismo , Ratones , Embarazo , Progesterona , Receptores de Progesterona/genética , Receptores de Progesterona/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
8.
Methods Mol Biol ; 2471: 19-48, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35175590

RESUMEN

Multidimensional fluorescence imaging represents a powerful approach for studying the dynamic cellular processes underpinning the development, function, and maintenance of the mammary gland. Here, we describe key multidimensional imaging strategies that enable visualization of mammary branching morphogenesis and epithelial cell fate dynamics during postnatal and embryonic mammary gland development. These include 4-dimensional intravital microscopy and ex vivo imaging of embryonic mammary cultures, in addition to methods that facilitate 3-dimensional imaging of the ductal epithelium at single-cell resolution within its native stroma. Collectively, these approaches provide a window into mammary developmental dynamics, and the perturbations underlying tissue dysfunction and disease.


Asunto(s)
Células Epiteliales , Glándulas Mamarias Animales , Animales , Epitelio , Microscopía Intravital/métodos , Glándulas Mamarias Animales/embriología , Glándulas Mamarias Animales/crecimiento & desarrollo , Morfogénesis , Imagen Óptica
9.
Cell Rep ; 38(7): 110375, 2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-35172155

RESUMEN

Branching morphogenesis is a fundamental process by which organs in invertebrates and vertebrates form branches to expand their surface areas. The current dogma holds that directional cell migration determines where a new branch forms and thus patterns branching. Here, we asked whether mouse Lgl1, a homolog of the Drosophila tumor suppressor Lgl, regulates epithelial polarity in the mammary gland. Surprisingly, mammary glands lacking Lgl1 have normal epithelial polarity, but they form fewer branches. Moreover, we find that Lgl1 null epithelium is unable to directionally migrate, suggesting that migration is not essential for mammary epithelial branching as expected. We show that LGL1 binds to Integrin ß1 and inhibits its downstream signaling, and Integrin ß1 overexpression blocks epithelial migration, thus recapitulating the Lgl1 null phenotype. Altogether, we demonstrate that Lgl1 modulation of Integrin ß1 signaling is essential for directional migration and that epithelial branching in invertebrates and the mammary gland is fundamentally distinct.


Asunto(s)
Epitelio , Glicoproteínas , Integrina beta1 , Glándulas Mamarias Animales , Morfogénesis , Transducción de Señal , Animales , Movimiento Celular/genética , Polaridad Celular , Proliferación Celular , Regulación hacia Abajo , Células Epiteliales/metabolismo , Epitelio/crecimiento & desarrollo , Femenino , Regulación Neoplásica de la Expresión Génica , Glicoproteínas/metabolismo , Integrina beta1/metabolismo , Glándulas Mamarias Animales/crecimiento & desarrollo , Glándulas Mamarias Animales/metabolismo , Ratones Transgénicos , Modelos Biológicos , Unión Proteica
10.
Dev Biol ; 481: 95-103, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34662538

RESUMEN

Breast cancer is the second leading cause of death in women after lung cancer, and only 5% of patients with metastatic breast cancer survive beyond ten years of diagnosis. Considering the heterogeneous subclasses of breast cancer, current cancer models have shortfalls due to copy number variants, and genetic differences of humans and immunocompromised animal models. Preclinical studies indicate stem cell activity in early post-natal mammary development may be reactivated in the human adult as a trigger to initiate cell proliferation leading to breast cancer. The goal of the work reported herein was to compare genetic expression of early development, post-natal pig mammary glands to the literature reported genes implicated in different subclasses of human breast cancer. Differentially expressed genes associated with breast cancer and present in early developing pig samples include NUCB2, ANGPTL4 and ACE. Histological staining confirmed E-cadherin, Vimentin, N-cadherin, and Claudin-1, which are all implicated in malignant cancer. Due to the homology of gene expression patterns in the developing pig mammary gland and reported genes in human breast cancer profiles, this research is worthy of further study to address a potential model using mammary development cues to unravel breast cancer biology.


Asunto(s)
Neoplasias de la Mama , Regulación Neoplásica de la Expresión Génica , Glándulas Mamarias Animales/crecimiento & desarrollo , Proteínas de Neoplasias , Animales , Animales Recién Nacidos , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Femenino , Humanos , Proteínas de Neoplasias/biosíntesis , Proteínas de Neoplasias/genética , Porcinos
11.
Environ Toxicol Pharmacol ; 89: 103785, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34896274

RESUMEN

In the mammary gland (MG), the developmental window for gestational/lactational differentiation and growth is highly vulnerable to hormonal disruption. Here we describe that the MG involution process in female gerbil mothers is delayed by bisphenol A (BPA) exposure during gestation and lactation. The process is directly influenced by changes in expression of extracellular matrix proteases MMP-2, MMP-9, and FAP, and the incidence of collagen and elastin is reduced after 7 and 14 days of weaning. A pro-inflammatory environment in the late involution process was confirmed by higher expression of TNF-α, COX-2 and phospho-STAT3 n the MG stroma, allied to increases in the incidence of macrophages and mast cells. These aspects impacted the proliferative pattern of epithelial cells, which decreased on the 14th post-weaning day. These data confirm that the milk production window of susceptibility is vulnerable to the impact of BPA, which promotes a suggestive pro-tumoral microenvironment during mammary involution.


Asunto(s)
Compuestos de Bencidrilo/toxicidad , Disruptores Endocrinos/toxicidad , Lactancia , Glándulas Mamarias Animales/efectos de los fármacos , Fenoles/toxicidad , Animales , Células Epiteliales/efectos de los fármacos , Femenino , Gerbillinae , Inflamación , Glándulas Mamarias Animales/crecimiento & desarrollo , Metaloproteinasas de la Matriz/metabolismo , Embarazo , Células del Estroma/metabolismo , Destete
12.
Endocrinology ; 163(3)2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-34918063

RESUMEN

Successful lactation and the risk for developing breast cancer depend on growth and differentiation of the mammary gland (MG) epithelium that is regulated by ovarian steroids (17ß-estradiol [E] and progesterone [P]) and pituitary-derived prolactin (PRL). Given that the MG of pigs share histomorphogenic features present in the normal human breast, we sought to define the transcriptional responses within the MG of pigs following exposure to all combinations of these hormones. Hormone-ablated female pigs were administered combinations of E, medroxyprogesterone 17-acetate (source of P), and either haloperidol (to induce PRL) or 2-bromo-α-ergocryptine. We subsequently monitored phenotypic changes in the MG including mitosis, receptors for E and P (ESR1 and PGR), level of phosphorylated STAT5 (pSTAT5), and the frequency of terminal ductal lobular unit (TDLU) subtypes; these changes were then associated with all transcriptomic changes. Estrogen altered the expression of approximately 20% of all genes that were mostly associated with mitosis, whereas PRL stimulated elements of fatty acid metabolism and an inflammatory response. Several outcomes, including increased pSTAT5, highlighted the ability of E to enhance PRL action. Regression of transcriptomic changes against several MG phenotypes revealed 1669 genes correlated with proliferation, among which 29 were E inducible. Additional gene expression signatures were associated with TDLU formation and the frequency of ESR1 or PGR. These data provide a link between the hormone-regulated genome and phenome of the MG in a species having a complex histoarchitecture like that in the human breast, and highlight an underexplored synergy between the actions of E and PRL during MG development.


Asunto(s)
Estrógenos/fisiología , Glándulas Mamarias Animales/crecimiento & desarrollo , Progesterona/fisiología , Prolactina/fisiología , Porcinos Enanos/fisiología , Transcriptoma/fisiología , Animales , Bromocriptina/administración & dosificación , Sinergismo Farmacológico , Estradiol/administración & dosificación , Receptor alfa de Estrógeno/análisis , Receptor alfa de Estrógeno/genética , Estrógenos/deficiencia , Femenino , Haloperidol/administración & dosificación , Glándulas Mamarias Animales/química , Glándulas Mamarias Animales/efectos de los fármacos , Acetato de Medroxiprogesterona/administración & dosificación , Modelos Animales , Morfogénesis/efectos de los fármacos , Morfogénesis/genética , Ovariectomía , Progesterona/deficiencia , Prolactina/deficiencia , Receptores de Progesterona/análisis , Receptores de Progesterona/genética , Porcinos , Transcriptoma/efectos de los fármacos
13.
J Mammary Gland Biol Neoplasia ; 26(3): 263-276, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34617201

RESUMEN

We previously showed that dietary trans-10, cis-12 conjugated linoleic acid (10,12 CLA) stimulates estrogen-independent mammary growth in young ovariectomized mice. Here we investigated the effects of in utero or postnatal exposure to cis-9, trans-11 (9,11 CLA) and 10,12 CLA on postnatal development of the mammary gland and its responsiveness to ovarian steroids. In the first experiment we fed dams different CLA prior to and during gestation, then cross fostered female pups onto control fed dams prior to assessing the histomorphology of their mammary glands. Pregnant dams in the second experiment were similarly exposed to CLA, after which their female pups were ovariectomized then treated with 17ß-estradiol (E), progesterone (P) or E + P for 5 days. In a third experiment, mature female mice were fed different CLA for 28 days prior to ovariectomy, then treated with E, P or E + P. Our data indicate that 10,12 CLA modifies the responsiveness of the mammary glands to E or E + P when exposure occurs either in utero, or postnatally. These findings underline the sensitivity of the mammary glands to dietary fatty acids and reinforce the potential for maternal nutrition to impact postnatal development of the mammary glands and their risk for developing cancer.


Asunto(s)
Grasas de la Dieta/efectos adversos , Ácidos Linoleicos Conjugados/efectos adversos , Glándulas Mamarias Animales/crecimiento & desarrollo , Exposición Materna/efectos adversos , Efectos Tardíos de la Exposición Prenatal/etiología , Animales , Biomarcadores/metabolismo , Estrógenos/metabolismo , Femenino , Glándulas Mamarias Animales/metabolismo , Ratones , Ratones Endogámicos BALB C , Embarazo , Efectos Tardíos de la Exposición Prenatal/metabolismo , Progesterona/metabolismo
14.
Breast Cancer Res ; 23(1): 90, 2021 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-34565423

RESUMEN

BACKGROUND: During pregnancy, the mouse mammary ductal epithelium branches and grows into the surrounding stroma, requiring extensive extracellular matrix (ECM) and tissue remodelling. It therefore shows parallels to cancer invasion. We hypothesised that similar molecular mechanisms may be utilised in both processes, and that assessment of the stromal changes during pregnancy-associated branching may depict the stromal involvement during human breast cancer progression. METHODS: Immunohistochemistry (IHC) was employed to assess the alterations within the mouse mammary gland extracellular matrix during early pregnancy when lateral branching of the primary ductal epithelium is initiated. Primary mouse mammary fibroblasts from three-day pregnant and age-matched non-pregnant control mice, respectively, were 3D co-cultured with mammary epithelial cells to assess differences in their abilities to induce branching morphogenesis in vitro. Transcriptome analysis was performed to identify the underlying molecular changes. A signature of the human orthologues of the differentially expressed matrisome RNAs was analysed by Kaplan-Meier and multi-variate analysis in two large breast cancer RNA datasets (Gene expression-based Outcome for Breast cancer Online (GOBO) und Kaplan-Meier Plotter), respectively, to test for similarities in expression between early-pregnancy mouse mammary gland development and breast cancer progression. RESULTS: The ECM surrounding the primary ductal network showed significant differences in collagen and basement membrane protein distribution early during pregnancy. Pregnancy-associated fibroblasts (PAFs) significantly enhanced branching initiation compared to age-matched control fibroblast. A combined signature of 64 differentially expressed RNAs, encoding matrisome proteins, was a strong prognostic indicator of distant metastasis-free survival (DMFS) independent of other clinical parameters. The prognostic power could be significantly strengthened by using only a subset of 18 RNAs (LogRank P ≤ 1.00e-13; Hazard ratio (HR) = 2.42 (1.8-3.26); p = 5.61e-09). The prognostic power was confirmed in a second breast cancer dataset, as well as in datasets from ovarian and lung cancer patients. CONCLUSIONS: Our results describe for the first time the early stromal changes that accompany pregnancy-associated branching morphogenesis in mice, specify the early pregnancy-associated molecular alterations in mouse mammary fibroblasts, and identify a matrisome signature as a strong prognostic indicator of human breast cancer progression, with particular strength in oestrogen receptor (ER)-negative breast cancers.


Asunto(s)
Neoplasias de la Mama/genética , Matriz Extracelular/genética , Fibroblastos/metabolismo , Glándulas Mamarias Animales/metabolismo , ARN/genética , Animales , Membrana Basal/metabolismo , Neoplasias de la Mama/mortalidad , Neoplasias de la Mama/patología , Técnicas de Cocultivo , Colágeno/metabolismo , Células Epiteliales/citología , Matriz Extracelular/metabolismo , Femenino , Fibroblastos/citología , Perfilación de la Expresión Génica , Humanos , Glándulas Mamarias Animales/citología , Glándulas Mamarias Animales/crecimiento & desarrollo , Ratones , Morfogénesis , Embarazo , Pronóstico , ARN/metabolismo
15.
Commun Biol ; 4(1): 993, 2021 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-34417554

RESUMEN

The human breast and ovine mammary gland undergo striking levels of postnatal development, leading to formation of terminal duct lobular units (TDLUs). Here we interrogate aspects of sheep TDLU growth as a model of breast development and to increase understanding of ovine mammogenesis. The distributions of epithelial nuclear Ki67 positivity differ significantly between younger and older lambs. Ki67 expression is polarised to the leading edge of the developing TDLUs. Intraepithelial ductal macrophages exhibit periodicity and considerably increased density in lambs approaching puberty. Stromal macrophages are more abundant centrally than peripherally. Intraepithelial T lymphocytes are more numerous in older lambs. Stromal hotspots of Ki67 expression colocalize with immune cell aggregates that exhibit distinct organisation consistent with tertiary lymphoid structures. The lamb mammary gland thus exhibits a dynamic mucosal and stromal immune microenvironment and constitutes a valuable model system that provides new insights into postnatal breast development.


Asunto(s)
Inmunidad Mucosa/inmunología , Macrófagos/inmunología , Glándulas Mamarias Animales/inmunología , Oveja Doméstica/inmunología , Células del Estroma/inmunología , Animales , Femenino , Macrófagos/metabolismo , Glándulas Mamarias Animales/crecimiento & desarrollo , Oveja Doméstica/crecimiento & desarrollo , Células del Estroma/metabolismo
16.
Dev Cell ; 56(13): 1875-1883, 2021 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-34256927

RESUMEN

Cell fate decisions are critical for adequate tissue development, maintenance and regeneration. In the mammary gland, epithelial cell fates are tightly controlled by the microenvironment. Here, we review how cell fate decisions are regulated by components of the microenvironment during mammary gland development and how pathological changes in the microenvironment can alter cell fates, leading to malignancy. Specifically, we describe the current understanding of how mammary cell fate is controlled and directed by three elements: the extracellular matrix, the immune microenvironment, and hormones-and how these elements can converge to create microenvironments that promote a fourth element: DNA damage.


Asunto(s)
Microambiente Celular/genética , Matriz Extracelular/genética , Glándulas Mamarias Animales/crecimiento & desarrollo , Glándulas Mamarias Humanas/crecimiento & desarrollo , Animales , Mama/crecimiento & desarrollo , Mama/patología , Diferenciación Celular/genética , Linaje de la Célula/genética , Femenino , Humanos , Glándulas Mamarias Humanas/metabolismo , Glándulas Mamarias Humanas/patología , Neoplasias/genética , Neoplasias/patología , Microambiente Tumoral
17.
Breast Cancer Res ; 23(1): 69, 2021 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-34187545

RESUMEN

BACKGROUND: Heterogeneity within the mouse mammary epithelium and potential lineage relationships have been recently explored by single-cell RNA profiling. To further understand how cellular diversity changes during mammary ontogeny, we profiled single cells from nine different developmental stages spanning late embryogenesis, early postnatal, prepuberty, adult, mid-pregnancy, late-pregnancy, and post-involution, as well as the transcriptomes of micro-dissected terminal end buds (TEBs) and subtending ducts during puberty. METHODS: The single cell transcriptomes of 132,599 mammary epithelial cells from 9 different developmental stages were determined on the 10x Genomics Chromium platform, and integrative analyses were performed to compare specific time points. RESULTS: The mammary rudiment at E18.5 closely aligned with the basal lineage, while prepubertal epithelial cells exhibited lineage segregation but to a less differentiated state than their adult counterparts. Comparison of micro-dissected TEBs versus ducts showed that luminal cells within TEBs harbored intermediate expression profiles. Ductal basal cells exhibited increased chromatin accessibility of luminal genes compared to their TEB counterparts suggesting that lineage-specific chromatin is established within the subtending ducts during puberty. An integrative analysis of five stages spanning the pregnancy cycle revealed distinct stage-specific profiles and the presence of cycling basal, mixed-lineage, and 'late' alveolar intermediates in pregnancy. Moreover, a number of intermediates were uncovered along the basal-luminal progenitor cell axis, suggesting a continuum of alveolar-restricted progenitor states. CONCLUSIONS: This extended single cell transcriptome atlas of mouse mammary epithelial cells provides the most complete coverage for mammary epithelial cells during morphogenesis to date. Together with chromatin accessibility analysis of TEB structures, it represents a valuable framework for understanding developmental decisions within the mouse mammary gland.


Asunto(s)
Células Epiteliales/metabolismo , Glándulas Mamarias Animales/crecimiento & desarrollo , Glándulas Mamarias Animales/metabolismo , Transcriptoma , Animales , Linaje de la Célula , Ensamble y Desensamble de Cromatina , Células Epiteliales/citología , Glándulas Mamarias Animales/citología , Ratones , Análisis de la Célula Individual , Células Madre/citología , Células Madre/metabolismo
18.
Cell Mol Life Sci ; 78(15): 5681-5705, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34156490

RESUMEN

17ß-estradiol controls post-natal mammary gland development and exerts its effects through Estrogen Receptor ERα, a member of the nuclear receptor family. ERα is also critical for breast cancer progression and remains a central therapeutic target for hormone-dependent breast cancers. In this review, we summarize the current understanding of the complex ERα signaling pathways that involve either classical nuclear "genomic" or membrane "non-genomic" actions and regulate in concert with other hormones the different stages of mammary development. We describe the cellular and molecular features of the luminal cell lineage expressing ERα and provide an overview of the transgenic mouse models impacting ERα signaling, highlighting the pivotal role of ERα in mammary gland morphogenesis and function and its implication in the tumorigenic processes. Finally, we describe the main features of the ERα-positive luminal breast cancers and their modeling in mice.


Asunto(s)
Neoplasias de la Mama/metabolismo , Receptor alfa de Estrógeno/metabolismo , Glándulas Mamarias Animales/crecimiento & desarrollo , Glándulas Mamarias Animales/metabolismo , Glándulas Mamarias Humanas/crecimiento & desarrollo , Glándulas Mamarias Humanas/metabolismo , Transducción de Señal/fisiología , Animales , Carcinogénesis/metabolismo , Femenino , Humanos
19.
Anim Genet ; 52(4): 440-450, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34096632

RESUMEN

The number of teats is a reproductive-related trait of great economic relevance as it affects the mothering ability of the sows and thus the number of properly weaned piglets. Moreover, genetic improvement of this trait is fundamental to parallelly help the selection for increased litter size. We present the results of single-marker and haplotypes-based genome-wide association studies for the number of teats in two large cohorts of heavy pig breeds (Italian Large White and Italian Landrace) including 3990 animals genotyped with the 70K GGP Porcine BeadChip and other 1927 animals genotyped with the Illumina PorcineSNP60 BeadChip. In the Italian Large White population, genome scans identified three genome regions (SSC7, SSC10, and SSC12) that confirmed the involvement of the VRTN gene (as we previously reported) and highlighted additional loci known to affect teat counts, including the FRMD4A and HOXB1 gene regions. A different picture emerged in the Italian Landrace population, with a total of 12 genome regions in eight chromosomes (SSC3, SSC6, SSC8, SSC11, SSC13, SSC14, SSC15, and SSC16) mainly detected via the haplotype-based genome scan. The most relevant QTL was close to the ARL4C gene on SSC15. Markers in the VRTN gene region were not significant in the Italian Landrace breed. The use of both single-marker and haplotype-based genome-wide association analyses can be helpful to exploit and dissect the genome of the pigs of different populations. Overall, the obtained results supported the polygenic nature of the investigated trait and better elucidated its genetic architecture in Italian heavy pigs.


Asunto(s)
Marcadores Genéticos , Estudio de Asociación del Genoma Completo/veterinaria , Haplotipos , Glándulas Mamarias Animales/crecimiento & desarrollo , Sus scrofa/genética , Animales , Femenino
20.
PLoS One ; 16(6): e0252954, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34111182

RESUMEN

The ability of persistent organic pollutants (POPs) with endocrine disrupting properties to interfere with the developing reproductive system is of increasing concern. POPs are transferred from dams to offspring and the high sensitivity of neonates to endocrine disturbances may be caused by underdeveloped systems of metabolism and excretion. The present study aimed to characterize the effect of in utero and lactational exposure to a human relevant mixture of POPs on the female mammary gland, ovarian folliculogenesis and liver function in CD-1 offspring mice. Dams were exposed to the mixture through the diet at Control, Low or High doses (representing 0x, 5000x and 100 000x human estimated daily intake levels, respectively) from weaning and throughout mating, gestation, and lactation. Perinatally exposed female offspring exhibited altered mammary gland development and a suppressed ovarian follicle maturation. Increased hepatic cytochrome P450 enzymatic activities indirectly indicated activation of nuclear receptors and potential generation of reactive products. Hepatocellular hypertrophy was observed from weaning until 30 weeks of age and could potentially lead to hepatotoxicity. Further studies should investigate the effects of human relevant mixtures of POPs on several hormones combined with female reproductive ability and liver function.


Asunto(s)
Disruptores Endocrinos/toxicidad , Hígado/fisiología , Glándulas Mamarias Animales/crecimiento & desarrollo , Exposición Materna/efectos adversos , Folículo Ovárico/crecimiento & desarrollo , Contaminantes Orgánicos Persistentes/toxicidad , Animales , Sistema Enzimático del Citocromo P-450/metabolismo , Femenino , Humanos , Lactancia/efectos de los fármacos , Hígado/efectos de los fármacos , Pruebas de Función Hepática , Glándulas Mamarias Animales/efectos de los fármacos , Ratones , Folículo Ovárico/efectos de los fármacos , Embarazo , Regulación hacia Arriba
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...